138 research outputs found

    LeMYC2 acts as a negative regulator of blue light mediated photomorphogenic growth and promotes the growth of adult tomato plants

    Get PDF
    Background: Arabidopsis ZBF1/MYC2bHLH transcription factor is a repressor of photomorphogenesis, and acts as a point of cross talk in light, abscisic acid (ABA) and jasmonic acid (JA) signaling pathways. MYC2 also functions as a positive regulator of lateral root development and flowering time under long day conditions. However, the function of MYC2 in growth and development remains unknown in crop plants. Results: Here, we report the functional analyses of LeMYC2 in tomato (Lycopersicon esculentum). The amino acid sequence of LeMYC2 showed extensive homology with Arabidopsis MYC2, containing the conserved bHLH domain. To study the function of LeMYC2 in tomato, overexpression and RNA interference (RNAi) LeMYC2tomato transgenic plants were generated. Examination of seedling morphology, physiological responses and light regulated gene expression has revealed that LeMYC2 works as a negative regulator of blue light mediated photomorphogenesis. Furthermore, LeMYC2 specifically binds to the G-box of LeRBCS-3A promoter. Overexpression of LeMYC2 has led to increased root length with more number of lateral roots. The tomato plants overexpressing LeMYC2 have reduced internode distance with more branches, and display the opposite morphology to RNAi transgenic lines. Furthermore, this study shows that LeMYC2 promotes ABA and JA responsiveness. Conclusions: Collectively, this study highlights that working in light, ABA and JA signaling pathways LeMYC2 works as an important regulator for growth and development in tomato plants

    A basic leucine zipper transcription factor, G-box-binding factor 1, regulates blue light-mediated photomorphogenic growth in Arabidopsis

    Get PDF
    Several transcriptional regulators have been identified and demonstrated to play either positive or negative regulatory roles in seedling development. However, the regulatory coordination between hypocotyl elongation and cotyledon expansion during early seedling development in plants remains unknown. We report the identification of a Z-box binding factor (ZBF2) and its functional characterization in cryptochrome-mediated blue light signaling. ZBF2 encodes a G-box binding factor (GBF1), which is a basic leucine zipper transcription factor. Our DNA-protein interaction studies reveal that ZBF2/GBF1 also interacts with the Z-box light-responsive element of light-regulated promoters. Genetic analyses of gbf1 mutants and overexpression studies suggest that GBF1 acts as a repressor of blue light-mediated inhibition in hypocotyl elongation, however, it acts as a positive regulator of cotyledon expansion during photomorphogenic growth. Furthermore, whereas GBF1 acts as a positive regulator of lateral root formation, it differentially regulates the expression of light-inducible genes. Taken together, these results demonstrate that GBF1 is a unique transcriptional regulator of photomorphogenesis in blue light

    A bZIP transcription factor, G-box binding factor 1, regulates blue light mediated photomorphogenic growth in Arabidopsis

    Get PDF
    Several transcriptional regulators have been identified and demonstrated to play either positive or negative regulatory roles in seedling development. However, the regulatory coordination between hypocotyl elongation and cotyledon expansion during early seedling development in plants remains unknown. We report the identification of a Z-box binding factor (ZBF2) and its functional characterization in cryptochrome mediated blue light signaling. ZBF2 encodes a G-box binding factor (GBF1), which is a basic leucine zipper transcription factor. Our DNA-protein interaction studies reveal that ZBF2/GBF1 also interacts with the Z-box light responsive element of light regulated promoters. Genetic analyses of gbf1 mutants and overexpression studies suggest that GBF1 acts as a repressor of blue light mediated inhibition in hypocotyl elongation, however it acts as a positive regulator of cotyledon expansion during photomorphogenic growth. Furthermore, whereas GBF1 acts as a positive regulator of lateral root formation, it differentially regulates the expression of light inducible genes. Taken together, these results demonstrate that GBF1 is a unique transcriptional regulator of photomorphogenesis in blue light

    A Mitogen-activated Protein Kinase cascade module, MKK3-MPK6 and MYC2, is involved in blue light-mediated seedling development in Arabidopsis

    Get PDF
    Mitogen-activated protein kinase (MAPK) pathways are involved in several signal transduction processes in eukaryotes. Light signal transduction pathways have been extensively studied in plants; however, the connection between MAPK and light signaling pathways is currently unknown. Here, we show that MKK3-MPK6 is activated by blue light in a MYC2-dependent manner. MPK6 physically interacts with and phosphorylates a basic helix-loop-helix transcription factor, MYC2, and is phosphorylated by a MAPK kinase, MKK3. Furthermore, MYC2 binds to the MPK6 promoter and regulates its expression in a feedback regulatory mechanism in blue light signaling. We present mutational and physiological studies that illustrate the function of the MKK3-MPK6-MYC2 module in Arabidopsis thaliana seedling development and provide a revised mechanistic view of photomorphogenesis

    Functional interconnections of HY1 with MYC2 and HY5 in Arabidopsis seedling development

    Get PDF
    Arabidopsis seedling development is controlled by many regulatory genes involved in multiple signaling pathways. The functional relationships of these genes working in multiple signaling cascades have started to be unraveled. Arabidopsis HY1/HO1 is a rate-limiting enzyme involved in biosynthesis of phytochrome chromophore. HY5 (a bZIP protein) promotes photomorphogenesis, however ZBF1/MYC2 (a bHLH protein) works as a negative regulator of photomorphogenic growth and light regulated gene expression. Further, MYC2 and HY1 have been shown to play important roles in jasmonic acid (JA) signaling pathways. Here, we show the genetic interactions of HY1 with two key transcription factor genes of light signaling, HY5 and MYC2, in Arabidopsis seedling development. Our studies reveal that although HY1 acts in an additive manner with HY5, it is epistatic to MYC2 in light-mediated seedling growth and gene expression. This study further demonstrates that HY1 additively or synergistically functions with HY5, however it works upstream to MYC2 in JA signaling pathways. Taken together, this study demonstrates the functional interrelations of HY1, MYC2 and HY5 in light and JA signaling pathways

    Interplay of degeneracy and non-degeneracy in fluctuations propagation in coherent feed-forward loop motif

    Full text link
    We present a stochastic framework to decipher fluctuations propagation in classes of coherent feed-forward loops. The systematic contribution of the direct (one-step) and indirect (two-step) pathways is considered to quantify fluctuations of the output node. We also consider both additive and multiplicative integration mechanisms of the two parallel pathways (one-step and two-step). Analytical expression of the output node's coefficient of variation shows contributions of intrinsic, one-step, two-step, and cross-interaction in closed form. We observe a diverse range of degeneracy and non-degeneracy in each of the decomposed fluctuations term and their contribution to the overall output fluctuations of each coherent feed-forward loop motif. Analysis of output fluctuations reveals a maximal level of fluctuations of the coherent feed-forward loop motif of type 1.Comment: 20 pages, 4 figure

    Arabidopsis CAM7 and HY5 physically interact and directly bind to the HY5 promoter to regulate its expression and thereby promote photomorphogenesis

    Get PDF
    Arabidopsis thaliana CALMODULIN7 (CAM7), a unique member of the calmodulin gene family, plays a crucial role as a transcriptional regulator in seedling development. The elongated HYPOCOTYL5 (HY5) bZIP protein, an integrator of multiple signaling pathways, also plays an important role in photomorphogenic growth and light-regulated gene expression. CAM7 acts synergistically with HY5 to promote photomorphogenesis at various wavelengths of light. Although the genetic relationships between CAM7 and HY5 in light-mediated seedling development have been demonstrated, the molecular connectivity between CAM7 and HY5 is unknown. Furthermore, whereas HY5-mediated gene regulation has been fairly well investigated, the transcriptional regulation of HY5 is largely unknown. Here, we report that HY5 expression is regulated by HY5 and CAM7 at various wavelengths of light and also at various stages of development. In vitro and in vivo DNA–protein interaction studies suggest that HY5 and CAM7 bind to closely located T/G- and E-box cis-acting elements present in the HY5 promoter, respectively. Furthermore, CAM7 and HY5 physically interact and regulate the expression of HY5 in a concerted manner. Taken together, these results demonstrate that CAM7 and HY5 directly interact with the HY5 promoter to mediate the transcriptional activity of HY5 during Arabidopsis seedling development

    Simple model for transport phenomena : Microscopic construction of Maxwell Demon like engine

    Full text link
    We present a microscopic Hamiltonian framework to develop Maxwell demon like engine. Our model consists of a equilibrium thermal bath and a non-equilibrium bath; latter generated by driving with an external stationary, Gaussian noise. The engine we develop, can be considered as a device to extract work by modifying internal fluctuations. Our theoretical analysis focusses on finding the essential ingredients necessary for generating fluctuation induced transport under non-equilibrium condition. An important outcome of our model is that the net motion occurs when the non-linear bath is modulated by the external noise, creating the non-zero effective temperature even when the temperature of both the baths are same.Comment: 6 pages, RevTex
    corecore